Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca -dependent mechanism

نویسندگان

  • Yanyan Li
  • Peili Wang
  • Jianchao Xu
  • Gary V. Desir
چکیده

Li, Yanyan, Peili Wang, Jianchao Xu, and Gary V. Desir. Voltagegated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca -dependent mechanism. Am J Physiol Cell Physiol 290: C345–C351, 2006; doi:10.1152/ajpcell.00091.2005.— Kv1.3 is a voltage-gated K channel expressed in insulin-sensitive tissues. We previously showed that gene inactivation or pharmacological inhibition of Kv1.3 channel activity increased peripheral insulin sensitivity independently of body weight by augmenting the amount of GLUT4 at the plasma membrane. In the present study, we further examined the effect Kv1.3 on GLUT4 trafficking and tested whether it occurred via an insulin-dependent pathway. We found that Kv1.3 inhibition by margatoxin (MgTX) stimulated glucose uptake in adipose tissue and skeletal muscle and that the effect of MgTX on glucose transport was additive to that of insulin. Furthermore, whereas the increase in uptake was wortmannin insensitive, it was completely inhibited by dantrolene, a blocker of Ca release from intracellular Ca stores. In white adipocytes in primary culture, channel inhibition by Psora-4 increased GLUT4 translocation to the plasma membrane. In these cells, GLUT4 protein translocation was unaffected by the addition of wortmannin but was significantly inhibited by dantrolene. Channel inhibition depolarized the membrane voltage and led to sustained, dantrolene-sensitive oscillations in intracellular Ca concentration. These results indicate that the apparent increase in insulin sensitivity observed in association with inhibition of Kv1.3 channel activity is mediated by an increase in GLUT4 protein at the plasma membrane, which occurs largely through a Ca -dependent process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism.

Kv1.3 is a voltage-gated K(+) channel expressed in insulin-sensitive tissues. We previously showed that gene inactivation or pharmacological inhibition of Kv1.3 channel activity increased peripheral insulin sensitivity independently of body weight by augmenting the amount of GLUT4 at the plasma membrane. In the present study, we further examined the effect Kv1.3 on GLUT4 trafficking and tested ...

متن کامل

The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity.

Kv1.3 is a voltage-gated potassium (K) channel expressed in a number of tissues, including fat and skeletal muscle. Channel inhibition improves experimental autoimmune encephalitis, in part by reducing IL-2 and tumor necrosis factor production by peripheral T lymphocytes. Gene inactivation causes mice (Kv1.3-/-) exposed to a high-fat diet to gain less weight and be less obese than littermate co...

متن کامل

Subcellular Distribution of a Voltage-Gated Potassium Channel: the Effect of Localization on Channel Function

Voltage-gated potassium channels are primary determinants of cellular excitability in the mammalian nervous system. The localization of these channels to distinct cellular compartments influences components of neuronal function, including resting membrane potential, action potential characteristics and neurotransmitter release. Thus, understanding the mechanistic basis of ion channel localizati...

متن کامل

Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains.

Voltage-gated potassium (Kv) channels regulate action potential duration in nerve and muscle; therefore changes in the number and location of surface channels can profoundly influence electrical excitability. To investigate trafficking of Kv2.1, 1.4 and 1.3 within the plasma membrane, we combined the expression of fluorescent protein-tagged Kv channels with live cell confocal imaging. Kv2.1 exh...

متن کامل

The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight.

Voltage-gated potassium (Kv) channels regulate cell membrane potential and control a variety of cellular processes. Kv1.3 channels are expressed in several tissues and believed to participate in cell volume regulation, apoptosis, T cell activation and renal solute homeostasis. Examination of Kv1.3-deficient mice (Kv1.3(-/-)), generated by gene targeting, revealed a previously unrecognized role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005